ত্রিকোণমিতি শব্দটি এসেছে গ্রীক শব্দ trigonon ("ত্রিভুজ") এবং মেট্রন ("পরিমাপ করতে")
| 
   sinθ=लম্ব/অতিভূজ  | 
  
   cotθ=ভূমি/লম্ব  | 
 
| 
   cosθ=ভূমি/অতিভূজ  | 
  
   secθ=অতিভূজ/ভূমি  | 
 
| 
   taneθ=लম্ব/ভূমি  | 
  
   cosecθ=অতিভূজ/লম্ব  | 
 
| 
   cosec θ = 1/sin θ  | 
  
   sinθ=1/cosecθ   | 
 
| 
   sec θ = 1/cos θ  | 
  
   cosecθ=1/sinθ  | 
 
| 
   cot θ = 1/tan θ  | 
  
   cosθ=1/secθ   | 
 
| 
   sin θ = 1/cosec θ  | 
  
   secθ=1/cosθ  | 
 
| 
   cos θ = 1/sec θ  | 
  
   tanθ=1/cotθ  | 
 
| 
   tan θ = 1/cot θ  | 
  
   cotθ=1/tanθ  | 
 
| 
   sin²θ +
  cos²θ= 1  | 
  
   sec²θ = 1+
  tan²θ  | 
 
| 
   sin²θ = 1 –
  cos²θ  | 
  
   tan²θ = sec²θ
  – 1  | 
 
| 
   cos²θ = 1-
  sin²θ  | 
  
   cosec²θ –
  cot²θ = 1  | 
 
| 
    sec²θ –
  tan²θ = 1  | 
  
    cosec²θ
  = cot²θ + 1  | 
 
| 
   cot²θ =
  cosec²θ – 1  | 
  
   | 
 
| 
   sin (A + B) =
  sin A cos B + cos A sin B  | 
  
   sin (A − B) =
  sin A cos B – cos A sin B  | 
 
| 
   cos (A + B) =
  cos A cos B – sin A sin B  | 
  
   cos (A – B) =
  cos A cos B + sin A sin B  | 
 
| 
   tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]  | 
  
   tan(A-B) = [(tan A
  – tan B)/(1 + tan A tan B)]  | 
 
| 
   sin2A
  = 2sinA . cosA     
             = [2tan A/(1+tan2 A)]  cos2A = cos2A–sin2A     
              = [(1-tan2 A) /
  (1+tan2 A)] cos2A
  = 2cos2A−1     
              = 1–2sin2A  | 
 
- tan(2x) = [2tan(x)]/ [1−tan2(x)]
 - sec (2x) = sec2 x/(2-sec2 x)
 - cos (2x) = (sec x. cos x)/2
 - Sin 3x = 3sin x – 4sin3x
 - Cos 3x = 4cos3x-3cos x
 - Tan 3x = [3tanx-tan3x]/[1-3tan2x]
 - sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
 - cos x cos y = 1/2[cos(x–y) + cos(x+y)]
 - sin x cos y = 1/2[sin(x+y) + sin(x−y)]
 - cos x sin y = 1/2[sin(x+y) – sin(x−y)]
 - sin C + sin D = 2 sin [(C+D)/2] cos [(C-D)/2]
 - sin C – sin D = 2 cos [(C+D)/2] sin [(C-D)/2]
 - cos C + cos D = 2 cos [(C+D)/2] cos [(C-D)/2]
 - cos C – cos D = -2 sin [(C+D)/2] sin [(C-D)/2]